on convergence of homotopy analysis method to solve the schrodinger equation with a power law nonlinearity

نویسندگان

m. a. fariborzi araghi

department of mathematics, islamic azad university, central tehran branch, p. o. box 13185.768, tehran, iran. s. naghshband

department of mathematics, islamic azad university, central tehran branch, p. o. box 13185.768, tehran, iran.

چکیده

in this paper, the homotopy analysis method (ham) is considered to obtain the solution of the schrodinger equation with a power law nonlinearity. for this purpose, a theorem is proved to show the convergence of the series solution obtained from the proposed method. also, an example is solved to illustrate the eciency of the mentioned algorithm and the h-curve is plotted to determine the region of convergence.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On convergence of homotopy analysis method to solve the Schrodinger equation with a power law nonlinearity

In this paper, the homotopy analysis method (HAM) is considered to obtain the solution of the Schrodinger equation with a power law nonlinearity. For this purpose, a theorem is proved to show the convergence of the series solution obtained from the proposed method. Also, an example is solved to illustrate the eciency of the mentioned algorithm and the h-curve is plotted to determine the region ...

متن کامل

On the convergence of the homotopy analysis method to solve the system of partial differential equations

One of the efficient and powerful schemes to solve linear and nonlinear equations is homotopy analysis method (HAM). In this work, we obtain the approximate solution of a system of partial differential equations (PDEs) by means of HAM. For this purpose, we develop the concept of HAM for a system of PDEs as a matrix form. Then, we prove the convergence theorem and apply the proposed method to fi...

متن کامل

A note on the convergence of the Zakharov-Kuznetsov equation by homotopy analysis method

In this paper, the convergence of Zakharov-Kuznetsov (ZK) equation by homotopy analysis method (HAM) is investigated. A theorem is proved to guarantee the convergence of HAM and to nd the series solution of this equation via a reliable algorithm.

متن کامل

The comparison of optimal homotopy asymptotic method and homotopy perturbation method to solve Fisher equation

In recent years, numerous approaches have been applied for finding the solutions of functional equations. One of them is the optimal homotopy asymptotic method. In current paper, this method has been applied for obtaining the approximate solution of Fisher equation. The reliability of the method will be shown by solving some examples of various kinds and comparing the obtained outcomes with the ...

متن کامل

Application of He’s homotopy perturbation method for Schrodinger equation

In this paper, He’s homotopy perturbation method is applied to solve linear Schrodinger equation. The method yields solutions in convergent series forms with easily computable terms. The result show that these method is very convenient and can be applied to large class of problems. Some numerical examples are given to effectiveness of the method.

متن کامل

Analytical Soliton Solutions Modeling of Nonlinear Schrödinger Equation with the Dual Power Law Nonlinearity  

Introduction In this study, we use a newly proposed method based on the software structure of the maple, called the Khaters method, and will be introducing exponential, hyperbolic, and trigonometric solutions for one of the Schrödinger equations, called the nonlinear Schrödinger equation with the dual power law nonlinearity. Given the widespread use of the Schrödinger equation in physics and e...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
international journal of industrial mathematics

جلد ۵، شماره ۴، صفحات ۳۶۷-۳۷۴

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023